A robust speech recognition system against the ego noise of a robot

نویسندگان

  • Gökhan Ince
  • Kazuhiro Nakadai
  • Tobias Rodemann
  • Hiroshi Tsujino
  • Jun-ichi Imura
چکیده

This paper presents a speech recognition system for a mobile robot that attains a high recognition performance, even if the robot generates ego-motion noise. We investigate noise suppression and speech enhancement methods that are based on prediction of ego-motion and its noise. The estimation of egomotion is used for superimposing white noise in a selective manner based on the ego-motion type. Moreover, instantaneous prediction of ego-motion noise is the core concept to establish the following techniques: ego-motion noise suppression by template subtraction and missing feature theory based masking of noisy speech features. We evaluate the proposed technique on a robot using speech recognition results. Adaptive superimposition of white noise achieves up to 20% improvement of word correct rates (WCR) and the spectrographic mask attains an additional improvement of up to 10% compared to the single channel recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Automatic Speech Recognition Under Ego-motion Noise of a Robot

Active auditory perception related tasks like sound localization and speech recognition have to be performed with high accuracy even while the robot is moving. However, the joints of the robot inevitably generate noise because of the active motors, i.e. ego-motion noise. This problem is very critical, especially in humanoid robots, because they tend to have a lot of joints and the motors are lo...

متن کامل

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Task-space Control of Electrically Driven Robots

Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the task-space. Therefore, designing a control system for a robotic system in the task-space requires the jacobian matrix information for transforming joint-space to task-space, which suffers from uncertainties. This paper deals with the robust task-space control of electrically driven robot manipula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010